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Abstract—A mixed method of elastodynamics. termed the state space approach,. is presented for
analyzing the dynamic response of composite plates. The method is based on the principle of
reducing the governing three-dimensional equations to a set of two-dimensional equations while
keeping the field equations in their exact form. Natural frequencies of vibration for thick orthotropic
laminae with varying angles of inclination of the orthotropic axes are presented for two distinctly
different materials and for large values of thickness. Comparisons with the exact solution of the
three-dimensional equations of elasticity establish the effectiveness of the present approach for the
class of problems considered. The numerical results from the present theory with a limited number
of terms considered in the mathematical expansion in the thickness coordinate are seent to be in
excellent agreement with the cxact results even for very thick plates.

INTRODUCTION

The lincar clastodynamic behavior of layered and composite plates has received considerable
attention with the introduction of various approximate methods for solution in order to
circumvent the complexity of an exact solution. With the carliest group of literature per-
taining to the general plate analysis, known as classical plate theory, Reissner and Stavsky
(1961) have shown that, with the well-known Kirchhoff assumptions, there exists a bending-
stretching coupling which remains in spite of lincarizing the governing plate equations. In
laminated plates, it was also established (Whitney and Leissa, 1969) that the bending-
stretching coupling increased the static deflections and reduced the fundamental frequencies.
The results of classical plate theory become questionable for thick plates or when the layer
propertics differ appreciably. Also, since the transverse shear deformations are neglected,
all the elastic constants of orthotropy are not taken into account.

In a different class of problems, several authors, including Yang et al. (1966) and
Pagano (1978), have extended Mindlin's theory to composites and layered plates by means
of appropriate shear correction factors to account for transverse shear deformations. The
complexity of theories from such extensions, where displacements are approximated by
higher order expansions in terms of thickness coordinate, often offsets the accuracy. With
reference to layered plates, continuity of tractions at the interfaces between the layers is not
satisfied. Also, the governing differential equations of three-dimensional elasticity are not
exactly satisfied. Further, as shown by Pagano (1978), the edge boundary conditions in
these methods are generally less in number than required by the order of the associated
differential equations. It can be safely said that these theorics are applicable to composites
where the magnitudes of the material properties, especially the shear moduli, are of the
same order.

The solution of the exact three-dimensional equations of elasticity has also been
attempted (Jones, 1970, 1971 ; Srinivas et al., 1970) for composite plates with rectangular
planform as well as for plates with one infinitely long dimension. However, the algebra
involved in three-dimensional solutions becomes too complex to be practical. Even under
plane strain conditions, the exact solution becomes very complicated with the introduction
of more layers in the laminate. Thus there is a necessity of developing an approach for
generally anisotropic laminated plates which could result in an accuracy as substantiated
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by the more exact methods, yet at the same time retain the simplicity and efficiency especially
when a large number of layers is being considered. The state space approach developed in
this paper fills this need. The attractive features of the approach are that it does not involve
any formal approximations in the three-dimensional equations of elastodynamics and
the interlayer traction and displacement continuities are satisfied exactly. The boundary
conditions at the lateral edges and surfaces can be prescribed either in terms of stresses or
in terms of displacements or a combination of both. The approach, as formulated by Vlasov
and Leontev (1966). is basically a mixed method of formulation in which both stresses
and displacements are unknowns. These stresses and displacements are written in terms of
their values at a chosen reference plane. The unknown initial functions at the reference
plane are determined by invoking appropriate boundary conditions at another plane where
some of the field variables are prescribed or zero. The resulting differential equations are
independent of the derivatives with respect to one of the spatial coordinates thereby reducing
the dimensionality of the problem by one. Chandrashekara (1982) and Hanagud et al.
(1983) have successfully applied the method to study the traveling waves in layered media.
The free vibration in cross-ply and angle-ply laminates has also been studied by Chan-
drashekara and Santhosh (1990) and Chandrashekara and Chander (1989). In these studies,
good correlation has been found with the exact solutions of three-dimensional equations
of elasticity. Recently, Faraji and Archer (1985, 1989) have applied the method of initial
functions to the static problem of thick isotropic and transversely isotropic shells. Taylor
scries expansions are assumed for the field variables and approximate theories of various
orders are obtained by considering a limited number of terms in the series. State space
equations have been used by Jiarang and Jiangiao (1990) to solve the axisymmetric free
vibration problems of transversely isotropic circular plates. Their solutions have been
favorably compared with those due to the approximate theories of Reissner and Mindlin.

The state space approach has been extended in this present paper to study the free
vibration response of thick angle-ply laminae and the specific results are compared with
thosc from the exact solution presented by Jones (1971). The plate is assumed to be infinitely
long in one dimension and simply supported at the lateral edges. The problem is still a
three-dimensional one because of the consideration of all field variables by virtue of the
nonzero clastic constants of orthotropy such as ¢4, €16, €45 cte. However, the field variables
are independent of the coordinate in the direction of infinite length. The efficicncy of the
method is demonstrated for various orientations of the fiber in the lamina as well as for the
cases of laminae with similar and very dissimilar material properties in the directions of
orthotropy. Also, a wide range of thicknesses is considered to study the efficiency of the
present approach for a broad range of problems in composite dynamics. Another important
feature of the present solution is that the numerical calculations are conveniently carried
out on a personal computer.

APPROACH

The basic idea of state space approach is to write a vector {q} of a set of dependent
field variables in terms of a corresponding vector {q,} at a reference or initial plane as

{q}: = [L]{qe}. H

The state vector {q} at any location = and the initial vector {q,} are related through
the transfer matrix [L}. In elastodynamic problems, the state vector consists of stresses and
displacements. In the above equation = refers to the thickness coordinate as shown in Fig.
| and satisfies the condition 0 € = < H/2, where H is the total thickness of the lamina. In
the present case, the initial planc (i.e., z = 0) is chosen to be the top surface of the lamina
where the stresses 0., 1, and t,. are known to be zcro. In other words, the elements of the
initial vector {q,} are «° v° and w". The other reference plane is now chosen to be the
middle surface of the lamina where some field variables are known to be zero depending
on the symmetric or the antisymmetric case being considered. Thus three equations result
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for the three unknown initial functions which can be solved numerically to obtain the
frequencies.

Field equations

In order to be consistent with the formulation of the exact solution (Jones, 1971), the
ficld equations are written for the case of a lamina with simple supports on edges x =0
and x = L (Fig. 1) and of infinite length in the y-dircction. The angle-ply lamina still gives
rise to the displacement v in the p-direction , but the field variables are independent of the
y-coordinate. The small displacement kinematic relations are then written as

& = Oulox
£ = dwfiz
£, = Ov/ox
&, = 0vf[0:

£, = dw/dx+duiz ()
and the stress displacement relations with respect to the lamina axes are

g, = ¢y Oufdx+c,y Ow/dz+c,, OvfOx

G, = €2 0U[OX 4+ a5 OW[Dz+ 54 OUJOX

. = ¢y dufdx+cyy Owldz+ ¢y Qvfox

Tyr = €44 CU[0z 4+ c45(IW[dx +Cuf0z)

T = Css(OW/OX+Cuj0z)+ ¢4 Cv/0z

Ty = €1 CUIOX+Cyg OW[Dz+ Coq CU/OX. )

It should be noted that the shear stresses r,. and r,, are not zero because of the angular
orientation of the fiber. In eqn (3). ¢; (i.j = 1,2,....6) refer to the orthotropic material
constants with respect to the lamina axes that are transformed from those with respect to
the principal axes of orthotropy (C,) by an angular rotation. Finally, the equations of
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motion are written as

do jéx+ it 6z = p Siulér’
Ct,. [0z + 0, éx = p &7cfer
86./0z+C1,./Cx = p & w/ot? 4

where p is the density of the material.

For the purpose of analysis, the plate behavior is split up into symmetric and anti-
symmetric parts which yield flexural and extensional modes of vibration. Considering the
middle plane of the plate as the reference plane (Fig. 1), the mid-plane conditions for the
symmetric case are written as

c=Hi2, w=t.=1,.=0. (5a)
For the antisymmetric case, they are
c=H/2, u=v=0.=0. (5b)
The surface conditions at the top or the bottom of the plate are
:=0, o, =1,=1,.=0 {5¢)

The remaining boundary conditions for the problem have to be prescribed at the
longitudinal edges represented by v =0 and x = L.

State space equations
The state vector of interest in the general problem can be split into two subvectors for
mathematical convenience as follows :

la = Lv v o) @) = Lo 7 w] ®)

where the symbot | | denotes a row vector. By a mathematical manipulation of field
equations (2), (3) and (4), the following transfer matrix relations can be written for the two
vectors {q,} and {q,}:

A@}/0z = [A(x, 0}{a.}

2{Q:}/0= = [B(x. O] {qi} )

where [A(x, 1)] and [B(x, 1)] are given by

G Ths oy
d, d,
[l = | zess 55 0
(1| dl
—a 0 p&
I’C—:"{Cn"(cfs/cn)}“: -{Clg_(C|3C36/CJJ)}12 —(cy3/c33)
[8] = —{c,(,-(c”c“/cn)}az P':z"{"u—(ciﬁ/cn)}il: —{C36/C33)2
—{cy3/can) —(c3s/c33)2 ey

In these equations and in what follows, the following notations are used :

dy = (Cascss—c3s); a=0/0x: o =3%dx®, a'=0d*/ox*etc.
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and

Er=3%or; &*=3a%0t etc.

The solution of eqn (7) is sought in terms of a Maclaurin series in the z-direction for
the state variables. These are written, for example, for displacement u, as

x (]
u(x,z,0) = u’+ % Y (Q) . ®3)

- im0 6:’.

The superscript “0” in the above equation refers to the surface z = 0 for the layer /, and
u® = u®(x, ). Thus the initial vector to be determined is a function of only one spatial
coordinate and time. By using eqn (7) successively, it is possible to write the higher order
derivatives of vectors {q,} and {q,} with respect to =. The series expansions for the field
variables as indicated in eqn (8) can be written as

(u) "L L. L. L. L, L.] (%)
v Ll'll Ll’l’ L“: Ll‘.‘ Ll‘y Ll W U
. L. L, L. L, L., L. )
{7 k atanyz= | ¢ 7 F Lo Ly L % L atz=90. (9)
t i 74 L-‘l‘ L w LX-' L xx L‘}‘ L“‘ t L+
Tz L,ru Lyr Lv: Lr.r L_w Lnt Ty:
. w J _.qu Lwt’ Lw: Lw\' Lw‘v Luu J \e w Py

Equation (9) can be scen to have the same form as eqn (1). The L values appearing here
arc the derivative operators (in terms of x and ¢ only) of various powers depending on the
number of terms considered in the Maclaurin series expansion. The subscripts on these
operators refer to the matrix clements linking the field variables at any =z to the ficld variables
at the initial surface = = 0. It should be noted that these equations refer to a single layer.

With ", v° and w° as the initial functions at the surface z = 0 and invoking the mid-
surface conditions given ineqn (5a), eqn (9) can be reduced to the final differential equations
for the symmetric case as follows :

L.muo + L,wvn + wa“,o =0
Lu"+L,0°+L, ,w =0
Lo+ L,°+L, w =0 (10a)

In a similar way, the antisymmetric mid-surface conditions given in eqn (5b) can be applied
to the gencral equations (9) to obtain the final differential equations for this casc as

L+ L 0 +L W =0
L+ L o°+L w =0
L+ L. 0°+L, . w =0 (10b)

The operator functions in eqn {10) now contain only the derivatives with respect to x and
t and are written with » = H/2. By considering a finite number of terms in the series
represented by eqn (8) for the field variables, various order theories of the present state
space formulation based on the exact field equations can be obtained. As a definition, a kth
order theory is one in which terms up to =* are considered. The solutions for the unknowns
in eqn (10) are sought by means of a separation of variables technique. The resulting
characteristic equations can be solved to give the frequencies of vibration.
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NUMERICAL SOLUTION AND DISCUSSION

The exact solution for the free vibration of a thick off-axis lamina has been given by
Jones (1971) for a laminate with finite x-dimension. The boundary conditions at the simply
supported edges are defined as

6. (x.z2.0)=0; t,(x.z)=0 and w(v.z¢) =0 (1)

It can be easily verified that these boundary conditions give rise to a consistent set of
boundary condition equations for the order of theory chosen for analysis. The equations
for o, and 1., are derived from state space equations (9) and the stress-displacement
relations (3). To satisfy the conditions (1 1). the solutions for u". ¢" and w" can be assumed
in the following form:

u’(x.1) = Y U, cos (nnx/L)e"

n=1

£
(x. )= ) V,cos (nnx/L) e

n=1\

wl (. t) = i W, sin (nnx/L) "™ (12)

n=1

where U,. V, and W, are constants and ), is the frequency of vibration. Substitution of
eqn (12) into eqn (10) and setting the determinant to zero gives rise to a characteristic or
frequency equation which when solved gives the frequencies of natural vibration.

In the subscquent presentation of results, to be consistent with the notations of the
exact solution by Jones (1971), the thickness ratio is defined to be the ratio of the total
thickness of the Limina to the length or the span between the supports (n#f/L). The non-
dimensional frequency w* is defined as

w* = \/ ;nu,f/p?(z.lil

where p and C|, refer to the density and stiffness constant in the principal direction
respectively and the parameter p = nn/L. In the following presentations, the non-
dimensional frequencies are plotted against the thickness parameter.

The material properties chosen for the lamina are given in Tuble |. As can be seen
from this table, the two materials chosen for analysis represent cases of similar and very
dissimilar properties. The ratios of longitudinal to transverse moduli for the two materials
are 4 and 40, indicating that the material under case 1 is less stiff than the other. The
numerical solutions presented here refer to these two cases. Figures 2a and 2b show the
results of convergence studies for a 15" lamina with material 2 for the flexural and exten-
sional modes respectively. The results from the 4th, 8th, 12th and 16th order theories are
shown for the lowest three fundamental frequencies. As can be seen from these figures, an
excellent convergence is achieved for the entire range of thickness parameters with a 16th
order theory and hence, in all the following numerical calculations, a 16th order theory is
considered.

Figures 3-7 show the variations of the nondimensional frequencies w* against the
nondimensional thickness parameter (or the wave number paramecter) nH/L for lamina

Table L.
C.II Cl! Cl\ C:: C_‘\ Cn Cu C“ Ceﬁ
Casc | 4.0 0.25 0.25 1.0 0.3 Lo 0.5 0.6 0.6
Casc 2 40.0 0.25 0.25 1.0 0.3 10 0.5 0.6 0.6
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inclination angles of 15°, 30°, 45°, 60° and 75°. Figures 3a-7a represent material system 1
with similar material properties while Figs 3b—7b represent the material system 2 with very
dissimilar material properties of the lamina. The thickness parameter includes both *thin”
plate and very thick plates. The maximum value of the thickness ratio chosen in all the
results is nH/L = 1.8. The results from the classical plate theory are not shown here since
it has already been well established that they are valid only for thin plates characterized by
the ratio nH/L being less than about 0.1. This is especially true of the flexural frequencies
in all the cases. The correlation of the classical plate theory solutions with the exact solutions
is more accurate for a broader range of thickness parameters for the first extensional
frequencies. These and other relevant discussions regarding the applicability of the classical
plate theory are well documented by Jones (1971). The present discussion deals with the
comparisons of the results from the state space approach with those from the exact solution.

The comparisons of nondimensional frequencies from the present approach with those
from the exact solution are shown in Figs 3-7. An excellent correlation can be observed for
the flexural and the first extensional frequencies for all the cases under consideration even
for very thick plates characterized by the ratio nH/L = 1.8. In other words, the present
approach yields results that are acceptable over a broad range of anisotropy of the lamina
as well as broad range of wavelengths. A fair comparison for the third frequency for the
various inclination angles can also be observed from these figures. The correlation of the
results from the state space approach with those from the exact solution tends to become
more accurate for the third frequency as the anisotropic angle increases from 15° to 75°.
In general, it can be observed from the results for the first three modes of vibration that
the state space approach gives acceptable results for a wide range of anisotropy angles and
for very high thickness values of the lamina.

From the standpoint of numerical calculations, it is worth mentioning that all the
calculations were run on a personal computer. Simple subroutines for multiplication of
derivative matrices as well as for equation solvers have been adopted.

Extension of the approach to a laminate

It is possible to extend the present formulation to the case of a layered plate with
different material propertics assigned to the layers. Equations expressing the basic idea of
the state space approach, i.c., eqns (1) or (9), can now be written for the case when there
are n layers. These relationships will be of the form

{a"}z, = (L L "N, .. [Lx]H,[LI]M,{‘Io} (13)

where {q"} and [L"] are the state vector and the field matrix, respectively, for the layer n
(for any = in that layer) and [L"""],, | is the transfer matrix for the layer n—1 with the
values tor 7 for that layer being substituted by its thickness #,_, and so on up to layer 1.
Equations (13) are also valid for the surface =, = H,. With the coordinate axes similar to
the ones shown in Fig. 1, the initial planc and the final reference plane for each layer can
be chosen to be the top and bottom surfaces, respectively, of that layer. The free surface
conditions on the initial plane =, = 0 for the top-most layer and the final reference plane
=, = H, for the bottom-most layer result in a set of differential equations given by eqn (13)
which can be solved for the remaining unknown ficld variables at the initial plane. 1t is
important to note that the continuity conditions at their interfaces between layers are
automatically and cxactly satisficd because the same principle of transfer matrix is used to
climinate all the intermediate state vectors of ficld variables representing those intermediate
layers. The state vector for any layer is then determined by the product of the initial vector
times a chain of transfer matrices of the individual layer times the field matrix of the layer
of interest. In addition, the state space approach as described in this paper can be extended
to study the vibration characteristics of plates with finite dimensions (without plane strain
assumptions) as well as wave propagation problems in composite layered media. These
studies are currently under investigation and will be the subject matters of further research
papers in the future.
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CONCLUSIONS

The state space approach. besides being simple mathematically, has been shown to
have an excellent capability of predicting the natural frequencies of vibration of angle-ply
laminae even with large thicknesses, as well as for laminae with very dissimilar material
properties. The computations can be handled on a personal computer and theories of
various orders can be numerically solved with ease depending on the required accuracy for
the particular problem. The approach gives results which are in very good agreement with
those from the exact solution of three-dimensional elasticity equations for a broad range
of anisotropy angles and a wide range of thickness ratios. The consideration of a large
number of layers in the case of an anisotropic laminate can be easily effected by a series of
transfer matrices and the corresponding multiplications through simple computer routines.
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